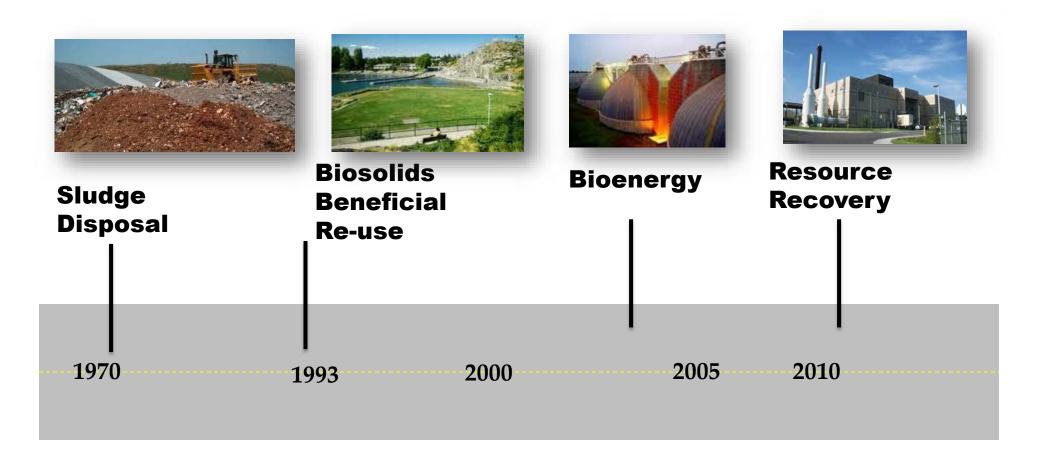
Electron Beam Will Be a Disruptive Technology in the Environmental Industry – Wastewater and Drinking Water Industries

- Professor Suresh Pillai, Ph.D.
- Professor of Microbiology and Food Safety, Dept of Food Science & Technology, Texas A&M University, USA
- Director, National Center for Electron Beam Research, Texas A&M University, USA

eBeam Technology for Cleaning, Healing, Feeding, and Shaping this World and Beyond... an International Atomic Energy Agency Collaborating Center for Electron Beam Technology

It's not a question whether eBeam technology will work in the environmental remediation industry.....

- Deer Island Wastewater Treatment Plant 1980's
 - MIT, 400 m³/day
- IMPELA, Ontario, Canada 1980's
 50 kW, 100 mA, 10 MeV electrons, 2454 dry tons/year
- Virginia Key, Miami, Florida 1990's
 - 75 kW, 50 mA, 1.5 MeV electrons, 4 kGy, 645 m³/day
- 2011 S. Korea mobile demonstration eBeam system for wastewater disinfection (low energy /low dose)
- 2017 China eBeam technology for reducing COD in dyeing industry wastewater (low energy/low dose)
 (3000 m³/day)
- 2021 China eBeam technology for treating medical wastewater 400 m³/day (Dynamitron[™] technology)


But why isn't it happening in a larger scale? How do we make this technology truly disruptive?

- Many decision makers in the environmental industry do not understand this technology (at least in the US)
- When can this technology move from prototype to large scale? (> 100 million gallons/day volumes)?

Outline

- Changing views of biosolids
- Response of microbial pathogens in sludges and effluent to eBeam doses
- Enhancing methane production by eBeam technology
- Economics of eBeam technology (sludge treatment)
- What is needed in terms of technology and outreach?

Changing View of Biosolids Management

Contemporary View

- Municipal sewage are significant pools of energy substrates, nutrients, and water
- Wastewater Treatment Plants
- Sustainable Resource Recovery Facilities
 - Compelling need to exploit different technologies to extract as much of the energy, nutrients and water as possible from different wastestreams

eBeam Technology Applications for Wastewater Industry

Class A Biosolids

- EPA recognizes E-Beam as a PFRP process to generate Class A biosolids
- Effective against all types of microorganisms
- Microbe inactivation is terminal
- Microbes will not show any regrowth
- "Green technology" since no chemical is used
- Process takes only a few seconds
- Dose can be adjusted higher to achieve recalcitrant organic degradation

Bio-gas Production

- will break down organics and enhance microbial degradation in digesters
- will increase dewaterability
- will reduce viscosity thereby increasing digester efficiency
- Could potentially reduce digester residence time
- Digester product will be Class A and stabilized
- Significantly lower costs than commercial processes in the market

Effluent Treatment

- Significant disinfection capability
- Chemical-free "green technology"
- E-Beam will destroy estrogenic compounds in effluent at appropriate doses
- E-Beam can replace multiple technologies in effluent treatment
- Same equipment can be used to treat sewage sludge and effluent provided appropriate product handling system is in place
- Ozone produced during e-beam generation can be used in conjunction with e-beam as an advanced oxidation treatment process

Microbial levels in biosolids

	Total Solids	Fecal coliforms (MPN/4 g)	E.coli (MPN/4g)	Salmonella spp (MPN/4g)	Aerobic spores (CFU/4 g)	Clostridium sp., (CFU/4 g)	Enterococci (MPN/4 g)
College Station							
Sample # 1	3.7 %	28.1	28.1	Bd*	1.7× 10 ⁷	2.9 × 104	> 2.4 × 10 ⁴
Sample # 2	2.8%	2.2 x 10 ⁷	42.9	<0.93	2.20 × 10 ⁷	1.4 × 10 ⁵	> 2.4 × 104
Sample # 3	3.1%	5.2	51.8	<0.84	2.2 × 10 ⁸	1.5 × 10 ⁵	> 2.4 × 10 ⁴
Sample # 4	3.1%	NA	52.1	0.94	4.7 × 10 ⁷	Bd**	> 2.4 × 10 ⁴
Sample # 5	2.8%	8.4	47.7	2.93	2.9 × 10 ⁷	2.1 × 104	> 2.4 × 10 ⁴
TAMU							
Sample # 1	2.4%	>1.8 × 10 ³	2.7 × 10 ³	1.2	4.8 × 10 ⁷	2.9 x 104	> 2.4 × 10 ⁴
Sample # 2	3.4%	1.9 x 10 ³	1.1×10^{3}	1.69	1.0×10^{8}	1.3 × 10 ⁷	> 2.4 × 10 ⁴
Sample # 3	3.4%	1.9 x 10 ³	1.9 × 10 ³	0.84	5.6x 10 ⁸	7.4 × 10 ⁶	> 2.4 × 10 ⁴
Sample # 4	3.6%	>1.6 x 10 ³	> 1.6 x 10 ³	5.52	2.5x 10 ⁷	7.7 x 10 ⁴	> 2.4 × 10 ⁴
Sample # 5	3.5%	>1.6 x 10 ³	> 1.6 X 10 ³	7.95	5.5 × 10 ⁷	3.6 × 10 ⁵	> 2.4 × 104

Detection limit 0.84 MPN/4g for Salmonella spp., and 1 CFU/4 g for Clostridium spp.

Target Virus levels in biosolids

	Total Solids	Somatic Coliphages (PFU/4 g)	Culturable Viruses (PFU/4g)
Texas location # 1			
Sample #1	3.7 %	bd*	Bd*
Sample # 2	2.8%	3.3	Bd
Sample # 3	3.1%	5.9	Bd
Sample # 4	3.1%	bd*	Bd
Sample # 5	2.8%	bd*	Bd
Texas location # 2			
Sample # 1	2.4%	1.9 x 10 ²	Bd
Sample # 2	3.4%	1.8 × 10 ²	Bd
Sample # 3	3.4%	1.4 × 10 ²	Bd
Sample #4	3.6%	1.5 x 10 ²	Bd
Sample # 5	3.5%	2.0 x 10 ²	Bd

*Detection limit = 1 PFU/4g

eBeam-based Inactivation of Pathogens in Biosolids

Target Organism	Biosolid Matrix	D ₁₀ value (range) kGy	If 10 kGy is delivered
E.coli	Aerobic digester sample	0.26 - 0.41	24-log reduction
E.coli	Anaerobic digester sample	0.25 -0.35	28 log reduction
Spiked Salmonella sp.	Aerobic digester sample	0.18 -0.35	28 log reduction
Spiked Salmonella sp.	Anaerobic digester sample	0.23 -0.33	30 log reduction
Aerobic spores	Aerobic digester sample	2.43-4.81	2-log reduction
Aerobic spores	Anaerobic digester sample	2.68 - 3.08	3-log reduction
Anaerobic spores*	Aerobic digester sample	3.34-5.13	2-log reduction
Anaerobic spores*	Anaerobic digester sample	3.12	3-log reduction
Spiked Poliovirus	Anaerobic digester sample	2.6	~3.8 log reduction
Spiked Rotavirus	Anaerobic digester sample	1.5	7 log reduction

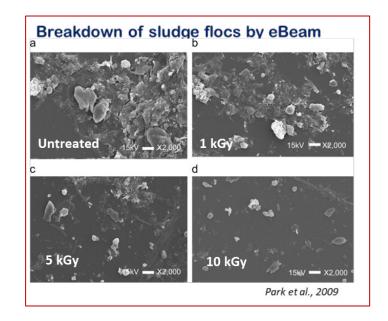
Enhancing Hydrolysis

- Thermal Hydrolysis Process (THP)
 - Cambi[™] process
- Biological Hydrolysis
 - Acid phase digestion
- Mechanical Hydrolysis
- Chemical Hydrolysis

Cambi® Process (Thermal Hydrolysis)

• Process

- High temperature: 150°C 170°C
- High pressure: 6-9 bars
- Reaction time: 20-30 min
- Dewatered sludge: 14% -17%

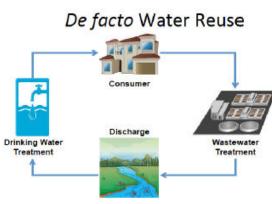

• Result

- Decreased viscosity
 - Allows sludge mixing at higher concentration
 - Decrease digestion volume
- Sterilized sludge
- Improved anaerobic digestion
 - Increased volatile solids reduction
 - Improved biogas production
 - Reduced mass for further processing

eBeam Technology for Energy Recovery from Municipal Sewage Sludge

Physico-chemical changes to sludge

pH 6.41 6.28 6.17 6.28 6.20 COD _{sol} (mg/L) 52 828 1254 442 1560 Soluble 14.4 306 397.3 62.4 383.8		Waste	Activated	l Sludge	Thi	ickened sluc	lge
COD _{sol} (mg/L) 52 828 1254 442 1560 Soluble 14.4 306 397.3 62.4 383.8	Parameter	Control	3 kGy	6 kGy	Control	3 kGy	6 kGy
(mg/L) Soluble 14.4 306 397.3 62.4 383.8	рН	6.41	6.28	6.17	6.28	6.20	6.06
14.4 300 337.3 02.4 303.8		52	828	1254	442	1560	1970
P	Soluble protein	14.4	306	397.3	62.4	383.8	559.0
(mg/L) Shin and Kar	(mg/L)					Shin and H	(ang, 2003



eBeam for Enhancing Methane Generation from Sewage Sludges

	ANA	EROBIC DIGESTER	RA
		– NO eBeam TRE	ATMENT
	20 days	15 days	10 days
OLR (g COD _{sol} / [L.d])	50.3	62.0	87.0
Influent VS (%)	1.92	2.15	1.81
VS Removal (%)	36.7	32.5	22.3
Biogas (L/ [m3.d])	82	95	65
	ANA	EROBIC DIGESTE	RB
	eBEA	I Treatment – Dos	e 1 kGy
	20 days	15 days	10 days
OLR (g COD _{sol} / [L.d])	87.9	110.9	143.6
Influent VS (%)	1.91	1.96	1.83
VS Removal (%)	51.4	42.0	30.2
Biogas (L/ [m3.d])	155	180	175
-	ANA	EROBIC DIGESTE	RC
		I Treatment – Dose	
1	20 days	15 days	10 days
OLR (g COD _{sol} / [L.d])	102.5	149.8	198.5
Influent VS (%)	1.88	1.91	1.85
VS Removal (%)	56.7	48.1	32.3
Biogas (L/ [m3.d])	230	260	235
	Δ		
		AM Treatment – De	
	20 days	15 days	10 days
OLR (g COD _{sol} / [L.d])		163.7	224.1
Influent VS (%)	1.90	1.89	1.85
VS Removal (%)	60.3	50.4	38.2

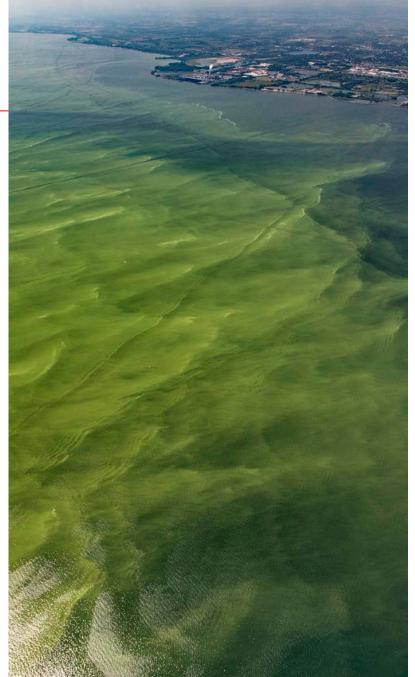
Shin and Kang, 2003

Water Reuse Challenges

Drinking

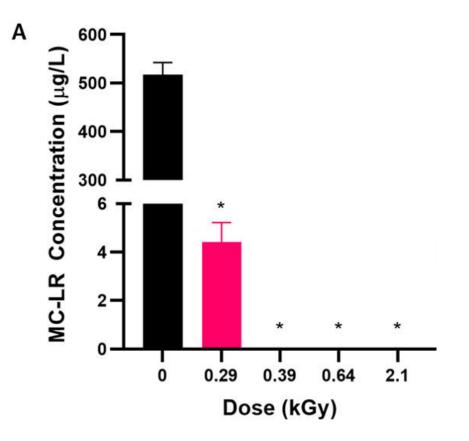
Water

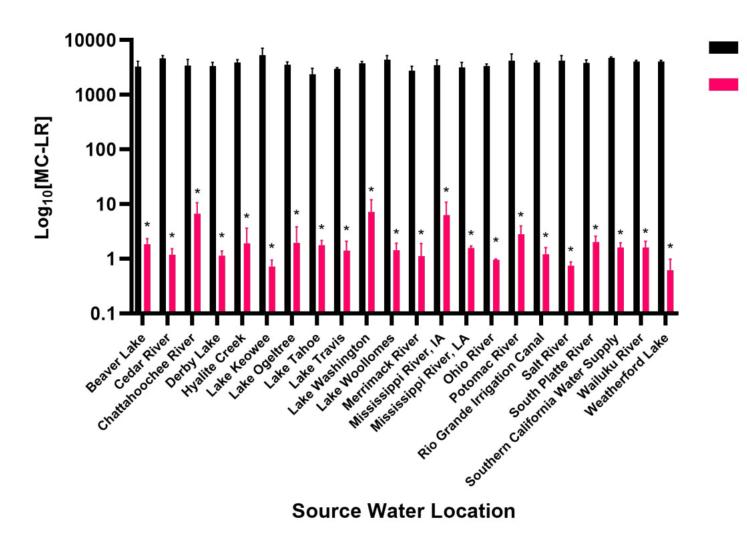
Treatment


De facto Water Reuse	Chemical Contaminants	Microbial Contaminants	
Consumer	Disinfection byproducts (bromoform, bromate, chloroform, trihalomethanes)	Enteric viruses (rotavirus, noroviruses, hepatitis A virus)	Direct Potable Reuse
Discharge Water ment UWater Treatment	Household products and industrial waste streams (Bisphenol A, perfluorooctanoic acid –PFOA and perfluorooctane sulfonic acid –PFOS)	Enteric bacterial pathogens (<i>Salmonella</i> spp., toxigenic <i>E.coli</i> , <i>Listeria spp</i> .	Consumer Consumer Advanced Water Treatment Treatment Wastewater Treatment
Indirect Potable Reuse	Household waste streams (antibiotic residues, estrogenic compounds, β-estradiol)	Pathogens during epidemics and pandemics (coronaviruses, <i>V. cholerae</i>)	Ur Daneda
Advanced Water Treatment or arcenvier nt		Protozoan parasites (<i>Cryptosporidium</i> sp. <i>, Giardia</i> sp.	

eBeam Pathogen Inactivation in Wastewater Effluent

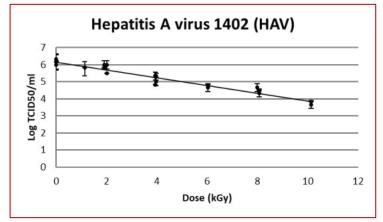
	Mean D ₁₀ Value (kGy)	Lo	g ₁₀ Reduction	n Levels
Pathogen		1 kGy	5 kGy	10 kGy
Bacterial cocktails				
Salmonella	$0.156 \pm 0.03^{\text{A}}$	5.92	29.62	59.25
Shigella	0.097 ± 0.02^{B}	10.02	50.10	100.20
Aeromonas	$0.066 \pm 0.01^{\circ}$	15.09	75.45	150.92
Viruses				
Hepatitis A Virus	$4.386 \pm 0.34^{\rm D}$	0.23	1.14	2.28
Murine norovirus	$3.769 \pm 0.19^{\rm E}$	0.27	1.33	2.65
Rotavirus	$1.449 \pm 0.15^{\rm F}$	0.69	3.45	6.90
Protozoa				
C. parvum	$0.032 \pm 0.002^{\rm G}$	30.96	154.80	309.60

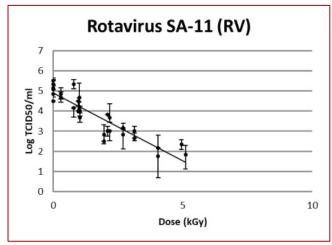



nrdc.org; miamiherald.com

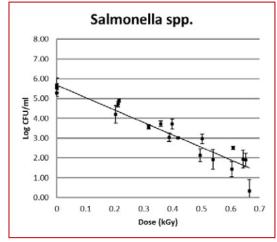
MC-LR is Degraded at Low eBeam Doses

- Initial MC-LR degradation via LC-MS/MS
 - Pure water
 - Doses >0.3 kGy <LOD</p>
 - 0.3 kGy ~85% reduction in MC-LR


eBeam Degrades MC-LR in Surface Water


^{0 kGy}
 ^{5 kGy}
 ^{6 MC-LR}
 ^{6 degrada}

- degradation exceeded 99% in all samples
- No trends observed between water quality and degradation


eBeam for Water Reuse by Destroying Pollutants

Pillai and Reimers WERF Report 2009

Pillai and Reimers WERF Report 2009

Pillai and Reimers WERF Report 2009

Pathogen	Water Reuse Target	eBeam dose that can achieve Water ReuseTarget
Viruses	8-log reduction	15 kGy
<i>Cryptosporidium</i> oocysts	5.5 log reduction	2 kGy
<i>Giardia</i> cysts	6 log reduction	2 kGy
Coliform bacteria	9 log reduction	2 kGy

Comparison of e-Beam to Thermal Hydrolysis to Mesophilic Anaerobic Digestion (MAD) in US \$ per dry ton

Process Scheme	10 MGD	10-100 MGD	100 MGD
E-Beam (100 kW) with Iron Stabilization	\$ 440	\$ 171	\$ 132
E-Beam (100 kW) MAD Pre-treatment	\$ 600	\$ 331	\$ 293
Alkaline Stabilization (open system)	\$ 886	\$ 808	\$ 730
Alkaline Stabilization (closed system)	\$ 665	\$ 606	\$ 548
Thermal Hydrolysis MAD Pre- treatment	N. A.	\$ 662	\$ 502
Thermal Hydrolysis MAD Post- treatment	N.A.	N.A.	\$ 735
Anaerobic Digestion Class A	\$ 810	\$ 747	\$ 590
Heat Drying utilized at Houston	\$ 1,165	\$ 809	\$ 619
Neutralizer TM Process	\$ 518	N.A.	N.A.
Aerobic Digestion Class A	\$ 780	N.A.	N.A.

Economic Analysis

Table 4: eBeam processing costs for biosolids of varying treatment plant throughputs

System	Capacity	Dry Tons/day	Capital Costs	Annual Amortization	Annual O&M	Total \$/dt
eBeam	10 MGD /100kW	7dtpd	\$3,323,350	\$388,832	\$366,168	\$ 311
eBeam	50 MGD /100kW	35dtpd	\$3,323,350	\$388,832	\$366,168	\$ 62
eBeam	50 MGD /400kW	35dtpd	\$7,635,053	\$893,301	\$581,753	\$ 143
eBeam	100 MGD /400kW	70dtpd	\$7,635,053	\$893,301	\$581,753	\$ 72

Economic Justification for Disruption

Capacity (mgd)	E-beam process	Dewatering	Thickening	Cost of Total Process
10	\$ 311	\$90	\$ 39	\$ 440
50	\$63	\$80	\$28	\$171
100	\$32	\$78	\$23	\$133

 Table E1: E-beam process coupled with stabilization (dollars/dry ton)

Table E3 Comparison of the e-beam process costs if used for replacing the Cambi[™] process prior to MAD (dollars/dry ton)

Plant Capacity (mgd)	Cambi™	E-beam
50	\$ 499	\$ 251
100	\$ 386	\$ 215

Reimers, Pillai et al.,

Technology Gaps/Future Work

- High Energy, High power (> 1000 kW) eBeam equipment non-existent
- Process trains for handling high volume sludges, biosolids, effluent are still in their infancy
- The practitioners in the water and wastewater industry have limited information on the technology
 - Metcalf & Eddy Disinfection section has NOTHING about Ionizing Technology
- Need more facilities around the world as proof that the technology does indeed work

Suresh D. Pillai

suresh.pillai@ag.tamu.edu

http://ebeam-tamu.org